2023년 1학기 방송통신대 행정계량분석 기말시험과제물)확률변수의 개념 및 확률변수와 표본평균 간의 관계를 간단히 기술하시오 등 |
행정계량분석.hwp |
해당 자료는 해피레포트에서 유료결제 후 열람이 가능합니다. |
분량 : 6 페이지 /hwp 파일 |
설명 : 교재를 중심으로 과제물에 적합한 형식과 내용으로 정성을 다해 작성했습니다. 필요한 경우 표와 수식을 첨부했습니다. 리포트 작성에 참고하시어 좋은 성적 받으세요~ 문단 모양(왼쪽 여백 0, 오른쪽 여백 0, 줄간격 160%) 글자 모양(굴림체, 장평 100%, 크기 11 pt, 자간 0%) 행복하세요, Now |
목차 1. 확률변수의 개념 및 확률변수와 표본평균 간의 관계를 간단히 기술하시오. (4점, 불완전한 답일 경우 그 정도에 따라 감점) ①확률변수의 개념 ②확률변수와 표본평균 간의 관계 2. 확률변수 X의 분산이 9일 때, 확률변수 X에 각각 4배를 곱하여 만든 새로운 확률변수 Y의 표준편차 값을 구하시오. (3점, 풀이과정 없이 정답만 쓰면 감점) 3. 제시한 표준정규분포표를 이용하여 확률변수 X가 평균이 60, 표준편차가 10인 정규분포를 이룰 때, 확률변수 X가 45 이상일 확률을 구하시오. (3점, 풀이과정 없이 정답만 쓰면 감점) 4. 전국의 대학생 중 145명을 뽑아 몸무게를 조사해 보았더니 평균이 68kg, 표준편차가 6kg이었다. 99% 신뢰수준에서 모집단의 평균을 추정하려고 한다. 표준오차의 값을 추정하시오. (3점, 풀이과정 없이 정답만 쓰면 감점) 5. 위 4번 과제에서 추정된 표준오차를 이용하여 모평균에 대한 신뢰구간을 추정하여 작성하시오. (3점, 풀이과정 없이 정답만 쓰면 감점) 6. 행정서비스 개선을 위해 대기자에 대한 표본을 추출하고자 한다. 원하는 오차의 한계는 1명이고 과거의 경험을 통해 알고 있는 모집단의 표준편차는 6명이다. 99% 신뢰수준을 확보하기 위해 필요한 최소한의 표본의 크기를 구하시오. (3점, 풀이과정 없이 정답만 쓰면 감점) 7. 전국의 가구 401가구를 표본으로 뽑아 월평균 전기사용량을 조사하였더니 평균이 250kWh이었다. 표준오차를 2.5kWh라고 추정하고, 모집단 평균이 240kWh가 아니다 라는 대립가설을 세운 다음 유의수준 0.01에서 가설검정을 하려고 한다. 표준화된 통계치 값을 구하시오. (3점, 풀이과정 없이 정답만 쓰면 감점) 8. 위 7번 가설검정 과제의 결론에 해당하는 문장을 직접 작성하시오. (4점, 불완전한 답일 경우 그 정도에 따라 감점) 9. 제시한 분산분석표를 이용하여 통계치 F값을 계산하시오.(3점, 풀이과정 없이 정답만 쓰면 감점) 10. 위 9번 분산분석 과제의 결과를 기초로 하여 귀무가설을 유의수준 0.05에서 검정할 때, 그 결론에 해당하는 문장을 직접 문장을 직접 작성하시오. (단, 임계치 F(4, 30) = 2.69)(4점, 불완전한 답일 경우 그 정도에 따라 감점) 11. 한국은행에서는 대출금리 변동에 대해 국민이 얼마나 잘 알고 있는가를 조사하기 위하여 300가구의 가구주들을 무작위로 표본 추출하였더니 주택 보유 형태별 결과가 다음의 표와 같았다고 한다. 이상의 도수분포표를 이용해 χ2-검정을 실시할 때 필요한 자유도를 구하시오. (3점, 풀이과정 없이 정답만 쓰면 감점) 12. 위 11번 χ2-검정 과제의 도수분포표를 이용해 계산한 χ2-통계치가 8.334일 경우, 유의수준 0.01에서 가설검정의 결론에 해당하는 문장을 직접 작성하시오. (단, 이론적 χ2 = 9.210)(4점, 불완전한 답일 경우 그 정도에 따라 감점) 13. 상관분석에서 두 변수 간 상관계수가 ?0.40라고 할 때, 결정계수 값을 구하시오. (3점, 풀이과정 없이 정답만 쓰면 감점) 14. 회귀분석에서 설명 안 된 변동량(SSE)이 70이고, 총변동량(SST)이 210일 때, 결정계수 값을 구하시오. (3점, 풀이과정 없이 정답만 쓰면 감점) 15. 회귀모형에서 F-검정의 특징 및 장점을 간단히 기술하시오. (4점, 불완전한 답일 경우 그 정도에 따라 감점) 16. 참고문헌 본문일부 1. 확률변수의 개념 및 확률변수와 표본평균 간의 관계를 간단히 기술하시오.(4점, 불완전한 답일 경우 그 정도에 따라 감점) ①확률변수의 개념 확률변수(確率變數, random variable)란 확률실험에서 나타나는 기본결과에 특정한 수치를 부여한 것을 말한다. 즉, 확률변수는 표본공간의 각 원소에 하나의 실수값을 대응시켜 주는 함수이다. 확률변수는 특정한 값을 가질 확률을 갖고 있다. 각 결과가 나타날 확률이 다르기 때문이다. 표 1처럼 확률변수가 취할 수 있는 값과 확률변수가 그 값을 취할 수 있는 확률을 짝지어 정리한 것을 확률분포(確率分布)라고 한다. 표 1은 2개의 동전을 동시에 던져 얻은 확률변수와 확률이다. 확률변수 X는 앞면이 나오면 1을, 뒷면이 나오면 0을 대응시켜 그 값을 더한 것이다. ②확률변수와 표본평균 간의 관계 표본평균도 확률변수이다. 예를 들면, 주머니에 서로 다른 숫자가 적힌 100개 종이가 있다고 가정하면, 이 주머니 속의 100개의 숫자가 모집단이 된다. 이때 무작위로 숫자를 하나 추출할 경우, 그 숫자는 확률변수이다. 만약 숫자 2개를 무작위로 복원 추출하여 평균을 구하면, 표본을 추출할 때마다 표본평균은 다른 값을 가질 것이다. 왜냐하면 표본평균은 추출한 두 개의 확률변수값의 평균이고, 이 두 값이 확률을 가지므로 그 두 값으로 계산한 표본평균 또한 확률을 가지게 되기 때문이다. 참고문헌 문병기(2023), 행정계량분석, 한국방송통신대학교출판문화원. 문병기(2023). 「행정계량분석 워크북」, 개정판: 한국방송통신대학교출판문화원 박서영, 이기재, 이긍희, 장영재(2022). 통계학개론. 한국방송통신대학교출판문화원. |
출처 : 해피레포트 자료실 |